Complex Zeros of Real Ergodic Eigenfunctions

نویسنده

  • STEVE ZELDITCH
چکیده

We determine the limit distribution (as λ → ∞) of complex zeros for holomorphic continuations φCλ to Grauert tubes of real eigenfunctions of the Laplacian on a real analytic compact Riemannian manifold (M, g) with ergodic geodesic flow. If {φjk} is an ergodic sequence of eigenfunctions, we prove the weak limit formula 1 λj φjk ] → i π∂∂|ξ|g, where φjk ] is the current of integration over the complex zeros and where ∂ is with respect to the adapted complex structure of Lempert-Szöke and Guillemin-Stenzel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zeros of eigenfunctions of some anharmonic oscillators

where P is a real even polynomial with positive leading coefficient, which is called a potential. The boundary condition is equivalent to y ∈ L(R) in this case. It is well-known that the spectrum is discrete, and all eigenvalues λ are real and simple, see, for example [3, 14]. The spectrum can be arranged in an increasing sequence λ0 < λ1 < . . .. Eigenfunctions y are real entire functions of o...

متن کامل

Distribution of Zeros of Random and Quantum Chaotic Sections of Positive Line Bundles

We study the limit distribution of zeros of certain sequences of holomorphic sections of high powers L of a positive holomorphic Hermitian line bundle L over a compact complex manifold M . Our first result concerns ‘random’ sequences of sections. Using the natural probability measure on the space of sequences of orthonormal bases {SN j } of H(M,L ), we show that for almost every sequence {SN j ...

متن کامل

On the determination of asymptotic formula of the nodal points for the Sturm-Liouville equation with one turning point

In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated. Furthermore, we obtain the zeros of eigenfunctions.

متن کامل

Final steps towards a proof of the Riemann hypothesis

A proof of the Riemann’s hypothesis (RH) about the non-trivial zeros of the Riemann zeta-function is presented. It is based on the construction of an infinite family of operators D in one dimension, and their respective eigenfunctions ψs(t), parameterized by continuous real indexes k and l. Orthogonality of the eigenfunctions is connected to the zeros of the Riemann zeta-function. Due to the fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005